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Abstract. Direct application of the control coefficients employed in metabolic control assessments of 

stable states to dynamic systems is not possible. Here, we demonstrate a workaround for this restriction 

based on the determination of the Jacobian's eigenvalues for the relevant system of dynamical equations. 

It is suggested that the relationship between frequency and rate constants is homogenous.  The validity of 

summation theorems for frequency tested on the various examples proves this assumption. We here 

discus the phenomena of temperature compensation of frequency in clockwise biochemical oscillations 

from the point of view of metabolic control analysis and conclude that some of reaction stages in the 

temperature-compensated oscillations must have a negative frequency control coefficients. 
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1.  Introduction  

 

In biological networks, periodic occurrences are common (Patke et al., 2020; Partch et 

al., 2014). Periodic signals can be a function of time, space, or both, depending on the 

oscillator's mechanism. Some of these periodic events are critical to the functioning of 

the living system in which they occur. As a result, identifying the pathways that 

determine these oscillations should be vital, if only to understand which molecular 

abnormalities result in pathological oscillations. The intricacy of what causes biological 

oscillations is sometimes overestimated by attributing complete control to a single 

pacemaker. It has recently been demonstrated that the frequency of biological 

oscillations can be modulated by more than one enzyme (Reijenga et al., 2001). All of 

these traits may be influenced by the system's molecular biological processes. 

The functional significance of oscillatory occurrences may be found in any of 

these traits or in their combinations. Because of the relevance and inherent complexity 

of controlling biochemical oscillations, a systematic approach to understanding this 

control may be beneficial. 

                                                 
How to cite (APA):  

Bayramov, Sh.K., Bayramova, N.Sh., Mammadova, Kh.R. & Khalilov, R.I. (2023). Frequency control analysis for 

biochemical oscillators. Advances in Biology & Earth Sciences, 8(1), 67-74. 

mailto:shahin_bay@mail.ru


ADVANCES IN BIOLOGY & EARTH SCIENCES, V.8, N.1, 2023 

 

 
68 

 

Metabolic Control Analysis (MCA) is a systematic method for assessing steady-

state control. It measures the amount to which any parameter, but especially all 

molecular activities, controls any steady-state variable within a metabolic circuit. 

Because oscillations are dynamic, they do not exist in a steady state. Standard 

MCA cannot be used to analyze transitory oscillations. Acerenza et al. (1989) proposed 

an operational definition of a timedependent control coefficient as the relative change in 

a system variable at time t after a perturbation of a parameter at time zero, divided by 

the relative change in that parameter. However, it appears that this time-dependent 

control coefficient is ineffective for characterization of autonomously oscillating 

systems because its value diverges with time. Neither standard MCA nor its extensions 

proposed by Acerenza et al. (1989) and Heinrich and Reder (1991) can be used to 

continuously fluctuating concentrations in a limit cycle oscillation (Kholodenko et al., 

1997; Demin et al., 1999). In contrast, the frequency of such oscillations is time 

independent, which should allow for the development of an MCA-like technique for 

those features. The theoretical foundations of a more generic approach have been 

advanced (Kholodenko et al., 1997), but elaborations on how it should be applied in 

actual systems have been absent. The metabolic control study of steady-state systems 

revealed principles that control coefficients should obey, which was a significant 

benefit. The summation theorems of these laws have a corollary in the control analysis 

of oscillatory systems. The summation theorems had been demonstrated by numerical 

experiments employing Fourier transformations for frequency control (Reijenga et al., 

2002). This summation theorem is quite important. First, when intuition may have 

suggested that control should be limited to a single pace-making step, the theorem 

demonstrates the correct formulation of the intuition. The frequency control should be 

one, but it could be distributed among all participating catalytic activities. 

The strongly proof of summation theorems and its application conditions, as well 

as practical determination method of control coefficients for self-oscillating biochemical 

networks are not proposed yet. Furthermore, it is not clear, that for what kinetically 

parameters are true summation theorems.  

This investigation directed to solve these problems. Therefore, results of this 

approach will allow to understand a molecular mechanism of generating and regulation 

of such extremely important biological process, as biodynamical information, encoded 

by frequency of biochemical autonomously oscillations. 

 

2. Theory and definitions 

 

Let us  consider sustained-oscillatory system which consists of two independent 

variables x and y. Let the system be described by system of two autonomous differential 

equations: 

 

  

  
        

  

  
        

                                                     (1) 

It is obvious that if the system (1) is in a sustained oscillatory mode, then the 

linear velocity of a representing point on the phase plane (2) won't depend on time   

      
         

           ,                                     (2) 

On the other hand, it is known that the cyclic frequency of oscillations ω is 

connected with phase velocity by a simple ratio: 
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                                                  (3) 

where l-length of the closed phase limit trajectory. In steady self-oscillations the length 

of the closed phase trajectory (a limit cycle) remains to a constant on time, therefore the 

frequency of oscillations is directly proportional with phase velocity and doesn't depend 

on time. 

One of fundamental assumptions in the theory of metabolic control is that rate of 

different stages in a metabolic network are directly proportional with rate constants p 

(parameters). It means that if all rate constants  simultaneously are change by t - times, 

then reaction rate also will change by t  times, i.e. 

                                                            (4) 

Therefore, rates of reactions are homogeneous of degree 1 functions of 

parameters, consequently  the frequency of the periodic decision of dynamic system (1)  

also is homogeneous of degree 1 function from rate parameters: 

                                                              (5) 

For the following analysis the definition of homogeneity is needed.  

A function,               is called homogeneous of degree h in          , if   

                  
              

for all t ≠ 0. Pertinent to metabolic control analysis is a theorem on homogeneous 

functions derived by Leonard Euler (1707- 1783). This theorem establishes a relation 

between a homogeneous function                 its arguments xi, and the partial 

derivatives,       :  if                 is homogeneous of degree h in            

then  

  
  

   
   

  

   
    

  

   
    

Applying this theorem to function of frequency (5) we will receive: 

   
  

   
   

  

   
     

  

   
                                          (6)                

The formula (6) can be rewritten as: 
  

 

  

   
 

  

 

  

   
    

  

 

  

   
                                       (7) 

On terminology of the modern theory of metabolic control, coefficients of 

metabolic control  are defined as the relation of a relative increment of system or local 

characteristics of metabolic process (∂Y⁄Y) on a relative increment of a  regulating 

parameter of defiant this increment       : 

                                                      
  

    

    
 

 

 

  

  
       

According to this terminology, it is obvious that terms in (7) are frequency control 

coefficients: 

   
  

  

 

  

   
                                                       (8) 

and  

    
  

                                                         (9) 

This result is the summation theorem for frequency control  coefficients. This  

summation theorem for frequency control coefficients is obtained on the basis of 

assumption  of  homogeneity relation for frequency in internal parameters. For the 

testing of validity of this theorem it is necessary to find a way of calculation of these  

control coefficients. 
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3. A way of calculation  of  frequency control coefficients   

 

It is well known that the frequency of sustained oscillation process which is 

described by system of the kinetic equations as (1) is determined by complex part of the 

eigenvalues  of corresponding  Jacobian  of system (1). These eigenvalues are defined 

by values of parameters of system (1).   If the obvious analytical view of complex part 

of eigenvalues as function from parameters is known, then  it is easily possible to find  

frequency control coefficients by formula (8).   

In many cases the obvious analytical type of complex part of these eigenvalues 

are unknown and therefore are calculated by means of computing programs.    In such 

cases we offer the following way for calculate the control coefficients: Let us rewrite 

the formula (8) as 

   
  

  

 

  

   
 

  

 

  

   
                                                    (10) 

and  give enough small increment to the considered parameter ∆рi. This increment will 

cause corresponding small change in complex part of eigenvalue (   . Further by 

replacing these small increments in (10) we can calculate the frequency control 

coefficients.    

      For an illustration of this way we will consider following examples. 

 

Model 1: Simple oscillation model Volterra 

  As the first example, we will consider Volterra's simple self-oscillatory model: 

 

  

  
         

  

  
         

                                                       (11) 

This system (11) has a characteristic equation: 

                                                         (12) 

The roots of this equation, i.e. eigenvalues of Jacobioan of the system (11) are  

                                                            (13) 

As it is stated above, the cyclic frequency of the periodic decision of system (11) will be 

equal: 

                                                                  (14) 

Consequently, frequency control coefficients for this model are easily calculated by 

formula (9): 

                                              
  

  

 

  

   
 

 

 

  

     
 
  

  
 

 

 
  

                                                             
  

  

 

  

   
 0 

                                            
  

  

 

  

   
 

 

 

  

     
 
  

  
 

 

 
  

                                                       
  

       

  
Table 1. Control coefficients of the reaction steps on the model 1. 

 

   
     

     
  Sum Sum

* 

0.5 0.0 0.5 1 1 

*All kinetic parameters are increased simultaneously by 1% and the total change in ω is determined 
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Model 2: A core model by Bier et al. (2000) 

Bier et al. (2000) describes glycolysis in terms of two variables, i.e., (internal) 

glucose and ATP. The system is summarized by the following dynamical system: 

 

 

  

  
        

  

  
         

 

    

                                            (16) 

where G and T denote the internal glucose concentration and the ATP concentration, 

respectively. Vm  is the constant influx of glucose and k1 is the enzyme activity (or 

concentration) of PFK. There is a positive feedback, i.e., ATP stimulates its own 

production. Furthermore, ATP is broken down according to Michaelis–Menten kinetics. 

In this study, we used the following parameter set as a reference state:    
        =0.02,                   

Numerical decision of system (16) by software programs SBW (http:// 

www.sbml.org) gives for the corresponding  eigenvalues:  

                       
Consequently, frequency of the periodical decision of (16) is defined by: 

             
Let increase kinetic parameters of system by 1% and calculate the corresponding 

relative change of ω: 

on  
   

  
       

  

 
 

                 

        
        ,  and     

  
  

 

  

   
        

on  
   

  
       

  

 
 

                 

        
        , and     

  
  

 

  

   
       

on  
   

  
     , 

  

 
 

                 

        
         , and    

  
  

 

  

   
        

 

 
Table 2. Control coefficients of the reaction steps on the model 2. 

 
   
     

     
  Sum Sum

* 

0.431 0.51 0.056 0.997 0.9999 

*All kinetic parameters are increased simultaneously by 1% and the total change in ω is determined 

 

Model 3: The autocatalytic  model of Kai-proteins  oscillations by  

Mehra et al. (2006)  

In this paper, authors describe a model  of in vitro oscillation of cyanobacterial 

Kai proteins (KaiA, KaiB, and KaiC) in which the KaiA- and KaiB-assisted autocatalytic 

phosphorylation and dephosphorylation of KaiC are the source for circadian 

rhythmicity. This model, based upon autocatalysis instead of transcription-translation 

negative feedback, shows circadian limit-cycle oscillations with KaiC phosphorylation 

profiles and summarized by the following system of differential equations: 
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       (17)              

 

where   KaiXY  denotes the interaction between KaiX and KaiY proteins, KaiCp 

indicates fully phosphorylated KaiC. In this work we used the following parameters 

(rate constants) set from the oscillatory region [13]: 

                                                                      
          ,             ,             

Values of  frequency control coefficients for this model  which are calculated by 

above demonstrated way are listed in Table 3.    

 
Table 3. Control coefficients of the reaction steps on the model 3. 

 
   
     

     
     

     
     

     
  Sum Sum

* 

0.009 0.004 1.598 -1.354 0.087 0.418 0.228 0.99 1.001 

*All kinetic parameters are increased simultaneously by 1% and the total change in ω is determined 

 

The temperature dependence of the frequency and temperature 

compensation in biochemical oscillations. 

It is well known, that each rate constant depends on temperature and this 

dependence  obeys the Arrhenius equation,  

       
 
  
  ,                                                       (18) 

where Ei is the activation energy, R is the gas constant, and T is the temperature in 

Kelvin. Ai is the pre-exponential factor, which is also treated as a constant. Therefore a 

change of temperature of reaction system exponentially influences on rate constant, a 

namely, the increase of temperature holds an exponentially increase of all rate constants.   

For the quantitatively determine a response of frequency on change of 

temperature, we  present cyclic frequency as complex function from temperature as: 

              and  

  

  
  

  

   

 

   

   
  

 

 

From here 
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                                                     (19) 

 

As above denoted, 

   
  

  

 

  

   
 is control coefficient frequency on rate constant. Then 

  
  

 

 

  

  
  will be a responcity coefficient of frequency on the temperature and  

  
   

 

  

   

  
  will be a responcity coefficient of i-th rate constant  on the temperature.  

From Arrhenius equation (18) we receive that 

  
   

  

  
                                                       (20) 

By regarding (20) in (19)  

  
  

 

  
    

  
                                                  (21) 

 

Temperature compensation is an essential property of clockwise biochemical 

oscillations, which means that in some living oscillatory biochemical processes the 

frequency (or period) remains as constant (more exactly, approximately constant) in 

physiologically allowed range of the temperature change. From the point of view of 

metabolic control analysis, temperature compensation means, that a response coefficient 

  
  must be equal or near to zero. Formula (21) shows, that  temperature compensation 

requires that one or several of the frequency control coefficients need to be negative, 

because R, T and  activation energies are positive. Consequently,  the  temperature-

compensated oscillators have to contain reactions that have opposing effects on the 

frequency and temperature compensation can occur  within a certain temperature 

interval, whenever the activation energy (Ei) weighted sum of the control coefficients is 

near to zero. The above offered method of calculation of frequency control coefficients 

allows to conclude, that not all biochemical oscillators are temperature-compensated. 

Really, frequency control coefficients in Table1 and Table 2 indicate that  first two 

oscillatory models (Model1 and Model2) considered above are not temperature-

compensated,  since all of that coefficients are positively, but model 3 has temperature -

compensate mechanism and may be temperature-compensated. In Model 3 the process 

R4 (rate constant k4), (In process R4, KaiB associates with KaiACp to form the ternary 

complex KaiABCp) has a negative frequency control coefficient (see Table 3) over the 

entire parameter space for which oscillations are observed. 

Formula (17) allows to find the average value of activation energy (Ea) for all 

reaction stages, since      
  

       and if all Ei =Ea, then  

 

  
  

 

  
    

 

 

   

   
  
  

    
 

 

   

 
  
  

 

                                         

and         
 .  

For example, from experimental data on the temperature-period dependence, 

graphically demonstrated in Dunlap (1999), we calculate that   
      , and    

 kJ/mol. 

From the above sensitivity analysis follows that for the temperature-compensated 

oscillatory system  average value of activation energy has to be rather small in 

comparison with temperature-non-compensated oscillators.  
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Thus, the way of the frequency analysis demonstrated in this work allows to 

quantitatively estimate a contribution of different stages of reaction to the frequency of  

oscillations, to distinguish temperature-compensated oscillatory systems from 

temperature non-compensated ones  and to find out mechanism and core of temperature 

compensation of oscillation frequency or period. 
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